Question: (75) Find Peak Element
There is an integer array which has the following features:
* The numbers in adjacent positions are different.
* A[0] < A[1] && A[A.length - 2] > A[A.length - 1].
We define a position P is a peek if A[P] > A[P-1] && A[P] > A[P+1].
Find a peak element in this array. Return the index of the peak.
Note
The array may contains multiple peeks, find any of them.
Example
[1, 2, 1, 3, 4, 5, 7, 6]
return index 1 (which is number 2) or 6 (which is number 7)
Challenge
Time complexity O(logN)
题解:
由时间复杂度的暗示可知应使用二分搜索。首先分析若使用传统的二分搜索,若A[mid - 1] < A[mid] < A[mid + 1]
,则找到一个peak为A[mid];若A[mid - 1] > A[mid]
,则A[mid]左侧必定存在一个peak,可用反证法证明:若左侧不存在peak,则A[mid]左侧元素必满足A[0] > A[1] > ... > A[mid -1] > A[mid]
,与已知A[0] < A[1]
矛盾,证毕。同理可得若A[mid + 1] > A[mid]
,则A[mid]右侧必定存在一个peak。如此迭代即可得解。
C++
class Solution {
public:
/**
* @param A: An integers array.
* @return: return any of peek positions.
*/
int findPeak(vector<int> A) {
if (A.empty()) {
return -1;
}
vector<int>::size_type start = 0;
vector<int>::size_type end = A.size() - 1;
vector<int>::size_type mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (A[mid] < A[mid - 1]) {
end = mid;
} else if (A[mid] < A[mid + 1]) {
start = mid;
} else {
return mid;
}
}
}
};