对于旋转数组的分析可使用画图的方法,如下图所示,升序数组经旋转后可能为如下两种形式。
Question: (62) Search in Rotated Sorted Array
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Example
For [4, 5, 1, 2, 3] and target=1, return 2
For [4, 5,1, 2, 3] and target=0, return -1
题解:
对于有序数组,使用二分搜索比较方便。分析题中的数组特点,旋转后初看是乱序数组,但仔细一看其实里面是存在两段有序数组的。因此该题可转化为如何找出旋转数组中的局部有序数组,并使用二分搜索解之。结合实际数组在纸上分析较为方便。
C++
/**
* 本代码fork自
* http://www.jiuzhang.com/solutions/search-in-rotated-sorted-array/
*/
class Solution {
/**
* param A : an integer ratated sorted array
* param target : an integer to be searched
* return : an integer
*/
public:
int search(vector<int> &A, int target) {
if (A.empty()) {
return -1;
}
vector<int>::size_type start = 0;
vector<int>::size_type end = A.size() - 1;
vector<int>::size_type mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (target == A[mid]) {
return mid;
}
if (A[start] < A[mid]) {
// situation 1, numbers between start and mid are sorted
if (A[start] <= target && target < A[mid]) {
end = mid;
} else {
start = mid;
}
} else {
// situation 2, numbers between mid and end are sorted
if (A[mid] < target && target <= A[end]) {
start = mid;
} else {
end = mid;
}
}
}
if (A[start] == target) {
return start;
}
if (A[end] == target) {
return end;
}
return -1;
}
};
源码分析:
target == A[mid]
,索引找到,直接返回A[mid]
和两段有序的数组特点,由于旋转后前面有序数组最小值都比后面有序数组最大值大。故若A[start] < A[mid]
成立,则start与mid间的元素必有序(要么是前一段有序数组,要么是后一段有序数组,还有可能是未旋转数组)。A[start]~A[mid]
间进行二分搜索,但能在A[start]~A[mid]
间搜索的前提是A[start] <= target <= A[mid]
。A[mid]~A[end]
间进行二分搜索,注意前提条件。Question: (63) 搜索旋转排序数组 II
跟进“搜索旋转排序数组”,假如有重复元素又将如何?
是否会影响运行时间复杂度?
如何影响?
为何会影响?
写出一个函数判断给定的目标值是否出现在数组中。
样例
给出[3,4,4,5,7,0,1,2]和target=4,返回 true
题解:
仔细分析此题和之前一题的不同之处,前一题我们利用A[start] < A[mid]
这一关键信息,而在此题中由于有重复元素的存在,在A[start] == A[mid]
时无法确定有序数组,此时只能依次递增start/递减end以缩小搜索范围,时间复杂度最差变为O(n)。
C++
class Solution {
/**
* param A : an integer ratated sorted array and duplicates are allowed
* param target : an integer to be search
* return : a boolean
*/
public:
bool search(vector<int> &A, int target) {
if (A.empty()) {
return false;
}
vector<int>::size_type start = 0;
vector<int>::size_type end = A.size() - 1;
vector<int>::size_type mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (target == A[mid]) {
return true;
}
if (A[start] < A[mid]) {
// situation 1, numbers between start and mid are sorted
if (A[start] <= target && target < A[mid]) {
end = mid;
} else {
start = mid;
}
} else if (A[start] > A[mid]) {
// situation 2, numbers between mid and end are sorted
if (A[mid] < target && target <= A[end]) {
start = mid;
} else {
end = mid;
}
} else {
// increment start
++start;
}
}
if (A[start] == target || A[end] == target) {
return true;
}
return false;
}
};
源码分析:
在A[start] == A[mid]
时递增start序号即可。